
i

Computer Science Department
Prairie View A&M University

Senior Design Project I (Fall 2019 – Spring
2020)

Report

Minetest Mods: Change Player
Model + Building Maker + Auto
World Explorer
Solo projects by Richard Qian, for Minetest

Instructor: Dr. Lei Huang

This project has no affiliation with any of the Minetest developers.
10/21/19

http://minetest.net/

Abstract

This project set consists of three different mods for the free/open-source voxel game

Minetest that aim to enhance the gameplay of the default game that ships with all

installations of that game. Two of these projects will involve machine learning (closely related

to artificial intelligence) in order to enable gameplay without requiring human supervision.

Like most other Minetest mods, these mods will be open-source, to be released under either

the GNU Lesser General Public License, version 3.0 or later, or the GNU General Public

License, version 3.0 or later.

Change Player Model (chchar) is a mod for Minetest that aims to allow players to

change the default character model for another one, optionally with default animations.

Building Maker (building-maker) is a mod for Minetest that enables a player or non-

playable entity to create multiple buildings or pieces of pixel art on their own, optionally

without the need for human involvement. The outputs produced can have their appearance,

strength, and size influenced.

Auto World Explorer (auto-explorer) is a mod for Minetest that enables a player or

non-playable entity to automatically navigate, by walking, flying, or swimming, terrain

without the need to human input. If a piece of terrain cannot be navigated, the entity will

attempt to jump or dig nodes where necessary in order to navigate it. Useful resources may

be acquired on the way, and they could be used to aid navigation.

i

Table of Contents
Abstract...i

Chapter 1: Problem Statement..1

1.1 Background and Statement..1

1.2 Challenges Assessment..2

Chapter 2: Introduction and Existing Work Survey...3

2.1 Introduction..3

2.2 Existing Work Survey..4

2.3 Development Environment..6

Chapter 3: Project Time Table --- Gantt Chart...8

3.1 Project Task List..8

3.2 – Gantt Chart..9

Chapter 4: Requirements and Usage Scenario..10

4.1 chchar Requirements...10

4.1.1 Functional Requirements..10

4.1.2 Non-functional Requirements...10

4.2 building-maker Requirements...11

4.2.1 Functional Requirements..11

4.2.2 Nonfunctional Requirements..11

4.3 auto-explorer Requirements..11

4.3.1 Functional Requirements..11

4.3.2 Nonfunctional Requirements..12

4.3 Example Use Cases For Each Mod..13

4.3.1 For chchar..13

4.3.2 For building-maker..14

4.3.3 For auto-explorer..15

Chapter 5: System Architecture Description and Interface Design...16

5.1 System Architecture...16

5.2 Interface Design: Graphical and Textual..17

ii

Chapter 6: Module and sub-module design and Function Description...20

6.1 Flowchart..20

6.2 Database Design...21

6.3 Data Flow Descriptions...21

Chapter 7: Requirement Validation...23

7.1 Minimum Requirements..23

7.1.1 For chchar..23

7.1.2 For building-maker..23

7.1.3 For auto-explorer..24

7.2 Optional Requirements..24

Chapter 8: Risk Assessment and Planning...26

8.1 Known Risks..26

Chapter 9: Interface Implementation..27

9.1 Programming Environment..27

9.2 System Development Environment...27

9.3 UI Screenshots..28

9.3.1 Screenshots for chchar..28

Chapter 10: Implementation Technical Details...30

10.1 Implementation of chchar..30

10.2 Implementation for auto-explorer and building-maker..32

10.2.1 Implementation with mobs_redo...35

Chapter 11: Test Plan and Test Results...36

Chapter 12: User Operation Manual...37

12.1 Installing Mods...37

12.2 Using chchar...37

12.3 Using mobs_npc with mobs_redo + building functionality...38

Chapter 13: Conclusions (SD II)..40

References...41

iii

List of Figures
Figure 1: Screenshots from Minetest Game with a Minecraft-like terrain and another not like. . .2

Figure 2: The default player model, with the default skin..6

Figure 3: Time line (spreadsheet form)...9

Figure 4: Timeline (Gantt chart form)..9

Figure 5: Screenshots from Minetest showing a built castle and default heads-up display.........12

Figure 6: Use case for chchar...13

Figure 7: Use case for building-maker...14

Figure 8: Use case for auto-explorer..15

Figure 9: System architecture of a standard Minetest Installation...17

Figure 10: Rough visualization of the GUI (left: all other 3rd-party) | right: for sfinv).................18

Figure 11: Visualization of the TUI (displaying the command help screen)..................................18

Figure 12: Flowchart from Minetest startup...19

Figure 13: Data flow diagram for Minetest 0.3...20

Figure 14: Screenshots from Minetest showing underground (lava is a hazard)..........................22

Figure 15: Help information for chchar chat command..25

Figure 16: chchar GUI using the built-in sfinv inventory mod...26

Figure 17: chchar GUI using the 3rd-party unified-inventory inventory mod...............................26

Figure 18: The readme detailing the specifications for metadata files...28

Figure 19: A nearby sheep mob walking towards the player holding dry grass............................31

Figure 20: Changing the behavior to enable mobs to access building functionality.....................32

Figure 21: Various mobs building different kinds of vegetation, although randomly..................32

iv

Chapter 1: Problem Statement

1.1 Background and Statement

Minetest [1] is a free/open-source voxel game engine with easy modding and game

creation, plus support for online servers. [1] It has potential to showcase diverse kinds of

gameplay due to its Lua-based modding API, such as becoming an RPG (role-playing game) or

FPS (first-person shooter).

However, the vast majority of gameplay showcased in practice is mainly like the ones

found in Minecraft [2], InfiniMiner, and similar games, with considerably less content out-of-

the-box. To a newcomer looking for a free alternative to Minecraft, he/she may become

disappointed to find out that Minetest is not entirely meant to be one, and thus may turn away

from it. To some FOSS (free/open-source software) critics, they may point out about the

inconvenience of having to download and install 3rd-party games and/or mods just to get a

descent experience, with many having varying levels of quality.

In hopes of trying to solve at least a part of these problems, I aim to write a set of three

mods that can become stepping stones in creating games with more diverse kinds of gameplay

or just making the existing gameplay more interesting. Upon the first public release, their

impact will:

• Enable users to load and use arbitrary 3D model files, as long as those formats are

supported by Irrlicht, the game engine used in Minetest. The 3D models do not need to

be voxel-styled, so users will have more choice in visual styles shown during gameplay.

• Allow for CPU-based gameplay, where a human is not involved in most points of

gameplay. The gameplay can be artificial-intelligence based, or based off of pre-made

instructions. It might make worlds more lively, especially when there are few or no

players playing in it at a time.

• Possibly allow for the creation of more dynamic and helpful non-playable entities who

can complete tasks on behalf of players, even if they are not active.

1

https://www.minecraft.net/en-us/
http://www.minetest.net/

1.2 Challenges Assessment

Normally a project like mine would be entirely volunteer-based. That means it gets

worked on whenever I find the time to do so, and releases are made whenever they are done.

This project set doesn’t cost me any money to complete (except the electricity required to

power any computers I use for development), as it is entirely software-based. However, each

project will require at least two months to reach completion, for a total of six months for three

mods. I have some coding experience, but I will need to learn a lot more and spend more time

working if I hope to realize a working version of these mods.

Figure 1: Screenshots from Minetest Game with a Minecraft-like terrain and another not like

2

Chapter 2: Introduction and Existing Work Survey

2.1 Introduction

The sole developer of the Change Player Model mod, Richard Qian, is currently a 5th-

year senior undergraduate student a Prairie View A&M University, majoring in Computer

Science. FOSS are not mainstream in most consumer markets, even if some are used as building

blocks of consumer-facing proprietary software, so getting assistance has become too difficult

for me. The code name for one of my mods, “chchar”, stands for “Change Characters”, and

follows a UNIX tradition of shortened executable names. This isn’t the case for the other two

mods, which instead have the code names “building-maker” and “auto-explorer”. All three of

the mod will be open-source, to be released under the GNU (Lesser) General Public License,

version 3.0 or later, so that people can integrate them into their own packages or games.

Most open-world and similar-genre video games allow customization of the player

character to varying degrees, from changing the character’s clothing and skin color to swapping

out different models for different kinds of characters, such as from a human to animal. They

sometimes also contain some amount of code mainly used for CPU players (if available)

enemies, and other NPCs. Additionally, some of these games also allow further customization

through scripting languages that extend the functionality of these games. For my project,

Minetest is written in C++, built on top of the Irrlicht engine, which is also written in C++.

Minetest uses Lua for all things scripting, the most significant usage of it being for writing mods

that extend this game’s functionality. My project will focus more on the scripting part, so that

users won’t have to recompile Minetest just to gain the functionality that this mod will provide.

3

2.2 Existing Work Survey

Minetest already ships with a default game, Minetest Game, that itself is composed of

several mods. Below will be described the works (both 1st-party and 3rd-party) most similar to

what I will do.

• mods/player_api [3]: This mod is what enables the loading of the default player model,

and it provides the facilities that make my mod possible to create.

• TenPlus1/mobs_redo [4]: This mod provides an API for adding monsters, animals, and

other entities into worlds.

• stujones11/minetest-3d_armor [5]: This provides wearable armor and makes wielded

items visible in the camera view.

• minetest-mods/skinsdb [6]: This mod provides support for player skins, supporting three

popular inventory mods, including unified_inventory, sfinv and smart_inventory.

• MirceaKitsune/minetest_mods_creatures [7]: This mod allows playing as different kinds

of mobs, each of whom can have different properties from the default player characters

(humans). Players start out as ghosts that have to be possessed by a mob in order to

play them, but can become them upon death.

• AiTechEye/aliveai [8]: This mod is another implementation of mobs, consisting of the

base code plus several example mobs.

• jordan4ibanez/open_ai [9]: This mod is another implementation of mobs, but it contains

additional code for mobs to target and pathfind, as well as rudimentary building from

schematic files (*.mts). I have deemed this mod to contain the most amount of

implemented code useful for my three projects.

These works are incompatible with Minetest, but some code found in them may be useful as

part of writing my mods:

• facebookresearch/craftassist [10]: “The goal of this project is to build an intelligent,

collaborative assistant bot in the game of Minecraft [2] that can perform a wide variety

of tasks specified by human players. Its primary purpose is to be a tool for artifical

intelligence researchers interested in grounded dialogue and interactive learning.”

Written primarily in Python 3, certain files seem to be useful to reference when

implementing equivalent code.

4

https://www.minecraft.net/en-us/
https://github.com/facebookresearch/craftassist
https://github.com/jordan4ibanez/open_ai
https://github.com/AiTechEye/aliveai/
https://github.com/MirceaKitsune/minetest_mods_creatures
https://github.com/minetest-mods/skinsdb
https://github.com/stujones11/minetest-3d_armor
https://notabug.org/TenPlus1/mobs_redo

• aleju/mario-ai [11]: “This project contains code to train a model that automatically plays

the first level of Super Mario World using only raw pixels as the input (no hand-

engineered features). The used technique is deep Q-learning.” Written primarily in Lua,

the same language that Minetest uses for mods.

5

https://github.com/aleju/mario-ai

Figure 2: The default player model, with the default skin

2.3 Development Environment

The set of software that I have to use is very rigid. However, I can use any text editor to

write the code, including those with integrated development environments. Exclusively for

chchar, the models that that mod can load can be made with any 3D modeling program, but

only one of them will be described in more detail.

• Lua [12]– A powerful, efficient, lightweight, embeddable scripting

language. The main scripting language that all mods for Minetest have

to be written in. My mod will be no exception.

• Irrlicht [13] - A cross-platform high performance

realtime 3D engine written in C++. The game

engine that Minetest uses for lower-level

6

http://irrlicht.sourceforge.net/
https://www.lua.org/home.html

functionality. I will have to take this into consideration when writing my mod what file

formats are supported by this engine. I can use any format supported by this engine, but

only those formats; other files will have to be converted to those supported formats

first before they can be used.

• Blender [14] - An integrated 3d suite for

modelling, animation, rendering, post-

production, interactive creation and playback

(games). This is the primary program I will use to create compatible 3D models for use

with my mod, but they don’t have to be created with it. Only relevant with the chchar

mod; it is not used in other mods or alterations of mine.

7

https://www.blender.org/

Chapter 3: Project Time Table --- Gantt Chart

3.1 Project Task List

Some parts of my project have already been done. I’ve actually started this project back

in May 2019, but suspended it due to not having free time to work on it. The following things

have already been completed (only for chchar):

• Created the project, and published it to a GitLab repository at

https://gitlab.com/Worldblender/chchar [15].

• Wrote a readme and a few of the files required for all Minetest mods.

• Selected the project license.

The following tasks will have to be completed:

1. Additional project repositories have to be made for the other two mods.

2. Directory layout of the mods and structure for loading models and audiovisual

resources. Additionally determine where to place the Lua code files.

3. Research similar works to see how they deal with the player model and implement AI

code.

4. Decide on the file formats for describing information about the models (for chchar only).

5. Interface design, including the GUI aspects and chat interaction.

6. Implementation of the Lua code, reusing any relevant code if licenses permit it.

7. Testing of the mods in Minetest, making sure that whatever I write actually works.

8. Marking the first stable release, and making the three mods public for everyone to use.

8

https://gitlab.com/Worldblender/chchar

3.2 – Gantt Chart

Figure 3: Time line (spreadsheet form)

Figure 4: Timeline (Gantt chart form)

9

Chapter 4: Requirements and Usage Scenario

As these mods run on top of Minetest, they share a few requirements:

• Require a computer and compatible operating system with access to the Minetest

client; Windows, macOS, GNU/Linux, FreeBSD, OpenBSD, DragonFly BSD, and Android

explicitly supported. (non-functional)

• The mods must be enabled on a per-world basis, and runs for as long a selected world is

active. (non-functional)

4.1 chchar Requirements

4.1.1 Functional Requirements
• Provides users the ability to load arbitrary 3D models and let them replace the

player model.

• Allows to reset to the default player model for compatibility with mods that alter

it.

• User interface (both graphical and textual) shall list available models,

information about them, and enable users to switch between them and the

default player model.

• 3D model settings are saved on a per-player basis. That means new players will

start with the default model, while existing ones will have their settings loaded.

• The mod needs to aware of other mods that alter the default player model, and

handle cases where it and those happen to be loaded simultaneously; either this

or the other mods may be disabled to prevent conflicts.

4.1.2 Non-functional Requirements

• Can load only the 3D model formats that the Irrlicht engine supports.

• 3D models and other audiovisual resources can only be loaded from mod-

specific directories; they cannot be loaded from just anywhere.

• GUI has to be called from either the chat prompt or an inventory button

(supported mods only).

10

• Animations are supported, but only with certain 3D model formats, and most

formats the Irrlicht engine supports lack animation support by the engine.

4.2 building-maker Requirements

4.2.1 Functional Requirements
• A player or NPC can create a building or pixel art by itself, either with pre-made

instructions or by itself.

• For pixel art, it can either be made procedurally, or from an image file loaded as

a texture.

• There has to be a way for the AI to determine when to stop building, or it could

build on forever without end.

• There is a toggle switch that allows stopping the automatic building at anytime,

in case a human player wants to take over building or inspect the outputs.

4.2.2 Nonfunctional Requirements

• Buildings and pixel art can be made only with materials seen in the item slot. Up

to eight can be loaded at once.

• Only texture files with formats supported by the Irrlicht engine will be loaded.

• It is possible for buildings and pixel art to be made with undesired blocks. This is

more likely to happen if survival mode is enabled instead of creative mode.

• The materials used depend on which mods are installed and enabled at run time.

More mods can provide a richer palette of blocks, while playing only with the

default game mods provides only limited palette of blocks.

• It is best to have creative mode enabled and both survival mode and damage

disabled for optimal operation of this mod. The creative mode allows infinite

block stacks so that an entity will not run out of blocks to use.

4.3 auto-explorer Requirements

4.3.1 Functional Requirements
• A player or NPC can navigate at least one chunk of a world map by itself, without

human input. Ideally, it is trying to locate useful resources, with a tree or bush

11

being the first target (both provide wood for making tools out of). If navigation is

successful, it may be rewarded with rare items such as mese crystals and

diamonds.

• The entity can try to jump and dig nodes if it cannot navigate a piece of terrain. If

available, it can also try building instead.

• There is a toggle switch that allows stopping the travelling at anytime, in case a

human player wants to take over navigation.

• The entity can decide to explore the world surface, dig underground and mine

for resources, or build upwards into the sky.

4.3.2 Nonfunctional Requirements

• World maps are not infinite, so the entity needs to either stop or turnaround

when hitting one of the six boundaries.

• It is possible for the entity to die if damage is enabled. It may warp back to a

certain point and have to restart navigation.

• The rewards given out depend on which mods are installed and enabled at run

time. More mods can provide other rewards, while playing only with the default

game mods will offer limited rewards.

• It is best to have survival mode enabled and creative mode disabled for optimal

operation of this mod. Enabling damage is optional, but having damage can act

as a punishment that an entity can try to avoid.

Figure 5: Screenshots from Minetest showing a built castle and default heads-up display

12

4.3 Example Use Cases For Each Mod

4.3.1 For chchar

Figure 6: Use case for chchar

13

4.3.2 For building-maker

Figure 7: Use case for building-maker

14

4.3.3 For auto-explorer

Figure 8: Use case for auto-explorer

15

Chapter 5: System Architecture Description and Interface Design

‘chchar’, ‘building-maker’, and ‘auto-explorer’ are Minetest mods, so their architectures

work more like plugins or add-ons rather than as standalone applications. The content below

will be described with that view in mind.

5.1 System Architecture

Minetest is designed as a client-server architecture. The server part is what runs a game

world and mods, while the client is the visualization of this world, letting users interact with it.

Server:

• Native C++ that manages a world. It can be run headlessly for remote play.

• The world map consists of a database file (SQLite by default).

• Runs the Lua scripts that alter the functionality of worlds. Loads mods that contain Lua

scripts if they have been enabled on a per-world basis.

Client:

• Displays a visualization of the world map onto an output device in 3D.

• Uses the Irrlicht rendering engine to display its contents. This engine is written in C++ for

better performance.

• Takes input from users, by default with a keyboard and mouse combo.

16

Figure 9: System architecture of a standard Minetest Installation

5.2 Interface Design: Graphical and Textual

The AI nature of the mods building-maker and auto-explorer means that a large chunk of

functionality will involve running by itself, without human input. Thus an interface for these two

mods is not feasible, unless this interface is one that can control the running of the AIs

themselves (for starting and stopping) or their parameters.

However, an interface for chchar can be created. This interface must be called from one

of various entry points already provided by Minetest itself or appropriate mods, both 1st-party

and 3rd-party ones. The options available are to call one from the chat prompt, adding a button

to a mod that provides a different inventory interface, or adding a tab to the built-in sfinv mod.

17

• Graphical – To be launched from an inventory mod, where the inventory can be

launched with a hotkey.

Figure 10: Rough visualization of the GUI (left: all other 3rd-party) | right: for sfinv)

Figure 11: Visualization of the TUI (displaying the command help screen)

18

• Textual – To be accessed from the chat prompt, and it can either call the GUI or perform

a quick action, depending on what arguments are passed after ‘/chchar’.

19

Chapter 6: Module and sub-module design and Function Description

6.1 Flowchart

Launch Minetest

Select world to play

Create world and
set parameters

Play selected
world

Which mod(s)
were loaded?

This mod will replace
the default player model
with user-specified ones

This mod will cause a
player or NPC to

navigate a world by
itself upon activation

At least one
world

present?

No

Are the
desired mods

enabled?

Enable the
desired mods

Yes

Yes

No

chchar auto-explorer

This mod will cause a
player or NPC to make

Buildings or pixel art

building-maker

Figure 12: Flowchart from Minetest startup

20

6.2 Database Design

Minetest uses a database (default format is SQLite) to store each world map and their

nodes. chchar does not need to perform any operations on it, but building-maker and auto-

explorer will and may, respectively, perform read/write operations indirectly through an entity.

Neither of these three mods perform direct operations on the world maps themselves.

6.3 Data Flow Descriptions

Below is a data flow diagram for the entire Minetest program, as of version 0.3. It’s not

made by me, but I will tell where my mods come into play.

21

chchar loads 3D models to
replace the default player

model with.

auto-explorer and
building-maker read the
 list of known blocks and
determine which blocks
are relevant to their AI.

chchar saves 3D model
settings per-player.

auto-explorer and
building-maker may read

players’ positions for
calculating distances

between other locations.

Figure 13: Data flow diagram for Minetest 0.3

22

Chapter 7: Requirement Validation

As these mods run on top of Minetest, they share a few requirements that they

absolutely have to pass:

• None of the mods end in an error during loading of a world. If an error and stack trace is

displayed, this requirement will fail for the mod(s) ended in an error. Fixing the code

pointed out may solve this problem.

• While a world is running, at least one of these mods has to cause visible change in a

player or NPC, whether their appearance, location, or inventory contents. If this isn’t the

case, this requirement will fail for the mod(s) that did not cause any change.

• In the chat prompt, the command “/mods” can be used to determine what mods are

loaded in the running world. If the names of any of my three mods are printed, that

means that they have successfully loaded.

7.1 Minimum Requirements

7.1.1 For chchar
• All 3D models to be loaded are those only in formats that the Irrlicht engine

supports.

• Information files for the 3D models are loaded only if they are not malformed.

Any malformed ones are skipped and such models associated with those files

won’t be loaded.

• The mod will save settings per-player. If two players are switched between, they

should have their own settings saved.

• There must a way to cleanly switch back to the default player model, and there

must not be any traces left behind after this operation.

7.1.2 For building-maker

• An AI-controlled player or NPC can successfully create a building or pixel art

without having to interrupt its work (final output to be evaluated by a human).

• There must be a way for the entity to stop building. This can be done by checking

for closed loops or using a special block or item after hitting a set limit.

23

• If building pixel art from an image, the blocks’ colors closely match individual

pixels from the original image (but they don’t have to 100% match).

7.1.3 For auto-explorer

• An AI-controlled player or NPC can successfully navigate between chunk to

chunk without human input or having to be manually interrupted.

• The entity starts moving on its own, without human input (but after the AI is

started). It ideally can locate useful resources (such as wood, stone, and iron

ores) by itself.

• The entity can avoid actions that harm itself (such as falling down more than five

blocks, staying in water for too long, touching lava, or eating red mushrooms). If

that does happen, it can use items that restore health (such as apples, brown

mushrooms, and blueberries).

• The entity can find workarounds to terrain that can’t be readily navigated, such

as by finding alternate routes, digging nodes, or building.

7.2 Optional Requirements

• Detection of other mods that alter the default player model needs to be written in order

to reduce the likelihood of crashes or conflicts. Those mods will have to be disabled, or

my mods will have to accommodate them somehow.

• Optional usage of special privileges if they are enabled, including fast (fast movement

speeds), fly (move without being subject to gravity), and noclip (pass through solid

blocks).

• Possible integration between two or more of my mods (building-maker and auto-

explorer more likely) in the form of sharing code between them or advertising

compatibility.

24

Figure 14: Screenshots from Minetest showing underground (lava is a hazard)

25

Chapter 8: Risk Assessment and Planning

8.1 Known Risks

As with all other pieces of software, my mods are not expected to be perfect. It is

possible for one or more of them to end in failure (while running in Minetest). However, I know

that none of these risks but the last one can cause significant damage, as the operations tend to

be read-only on data. Here are some that can happen:

• An error in the code itself – Minetest will abort loading or running the world and display

the error and where the error happened in the code. I have to step in and fix the errors

that arise if they happen.

• The computer Minetest runs on does not have a sufficient enough GPU to run Minetest

– Minetest will be unable to run its engine. Software rendering can be used as a

workaround, but performance will likely suffer.

• A 3D model or texture with a format unknown to the Irrlicht engine or is corrupted – the

model will be skipped, and errors will be printed in the chat window. In the case of a

texture, a dummy texture will be created instead, and errors will be printed in the chat

window.

• A 3D model that lacks the required information files – the model will not be loaded, and

become unusable until such files are created, and the running world is shut down. (only

for chchar)

• Other mods that alter the default player model or take control of entities with

incompatible methods are loaded and not detected – conflicts may arise or the

alterations will look out-of-place if no crashes occur.

• A change in the APIs dealing with the player and entities – may require that I rewrite my

mods to support them. Not doing this means that it won’t support future Minetest

versions that change those APIs.

• The APIs dealing with the player and entities happen to be too difficult to understand or

cannot be adapted to my use cases – I will be unable to complete any or all of my mods,

and they could be left in a potentially perpetual alpha state. The worst case scenario

that should not happen, as I have the code of other related mods that I can reference

and use to help bootstrap some of my code.

26

Chapter 9: Interface Implementation

9.1 Programming Environment

All operating systems are fair game, as long as a port of Minetest exists for them.

Windows, macOS, GNU/Linux, FreeBSD, OpenBSD, DragonFly BSD, and Android are explicitly

supported. The bare minimum needed for coding is a basic text editor. Optionally, an IDE that

supports code completion and similar enhancements for Lua can be used. Most testing must be

done inside Minetest, as it has the Lua interpreter that also supports Minetest-specific

functions. It is possible to test code outside of it if only standard Lua code is being tested.

However, two 3rd-party mods allow for running (almost) arbitrary Lua code within Minetest:

• minetest-mods/qa_block [15]: A developer helper mod that allows running any Lua code

for testing purposes. It can list and run Lua scripts placed in “checks” subfolder. with

some check scripts. The second part is being able to display the global Lua tables tree.

• prestidigitator/minetest-mod-luacmd [16]: “This mod adds the useful debugging

command /lua which executes its parameter string as a Lua chunk, as if it were being

run in the body of a function inside some mod file. Errors are reported to the player via

in-game chat, as is anything sent to the print() function.”

9.2 System Development Environment

No special hardware is required to run Minetest, as my projects are entirely software-

based. Any desktop, laptop, tablet, or smartphone can run Minetest as long as there exists a

port for those devices. It doesn’t matter whether a system’s CPU architecture is x86 or ARM, all

will work, as long as both a suitable operating system and Minetest have been ported to those

architectures. System requirements are low, but at least a GPU (graphics processing unit)

capable of OpenGL or DirectX is required to optimally display the 3D graphics. It is also possible

to complete parts of the development process offline (no internet connection required),

although I may be unable to access online resources if I happen to need them during this time.

27

https://github.com/prestidigitator/minetest-mod-luacmd
https://github.com/minetest-mods/qa_block

9.3 UI Screenshots

9.3.1 Screenshots for chchar

Below is the chat command help for chchar, displayed in-game. It is always accessible no

matter what inventory mod is being used.

Figure 15: Help information for chchar chat command

It is possible to get a GUI out-of-the-box with the sfinv mod from the default Minetest

Game, assuming that no other 3rd-party inventory mods are installed and enabled. One

3rd-party inventory mod is supported, that being unified-inventory.

28

Figure 16: chchar GUI using the built-in sfinv inventory mod

Figure 17: chchar GUI using the 3rd-party unified-inventory inventory mod

29

Chapter 10: Implementation Technical Details

10.1 Implementation of chchar

The mod chchar is now available at https://gitlab.com/Worldblender/chchar. I have

based this mod on top of skinsdb [6]. For the most part, I simply reused the majority of the

already-existing code, saving me a considerable amount of time in the process. Afterwards, I

thought about how to adapt the code so that it works with 3D model files instead. I did all of

the following to adapt it:

• Alter the format of the metadata files to include more fields (specs can be seen on

Figure 18).

• Simplified actually changing player models to revolve around using

player_api.register_model() and player_api.set_model(),

essentially making this mod into a frontend for player_api.

• Adapt the API and its documentation to work with 3D models, mainly in the form of

search-and-replace.

• Disable the code that enables downloading of skins in-game, as it is irrelevant to this

purpose of this mod.

30

https://github.com/minetest-mods/skinsdb
https://gitlab.com/Worldblender/chchar

Figure 18: The readme detailing the specifications for metadata files

In order to better support 3D models and not image files used as player skins, I wrote some

additional code to parse the additional fields I specified (written in Lua like with all other mods):

-- How to parse config files from https://stackoverflow.com/q/55523750

 local file = io.open(chchar.modpath.."/meta/"..name..".txt", "r")

 if file then

 print("Found meta file for "..fn)

 for line in file:lines() do

 if line:find("name = ") ~= nil then

 model_obj:set_meta("name", line:split(" = ")[2])

 elseif line:find("author = ") ~= nil then

 model_obj:set_meta("author", line:split(" = ")[2])

 elseif line:find("license = ") ~= nil then

 model_obj:set_meta("license", line:split(" = ")[2])

 elseif line:find("animation_speed = ") ~= nil then

 model_obj:set_meta("animation_speed", line:split(" = ")[2])

 elseif line:find("stepheight = ") ~= nil then

 model_obj:set_meta("stepheight", line:split(" = ")[2])

 elseif line:find("eye_height = ") ~= nil then

 model_obj:set_meta("eye_height", line:split(" = ")[2])

 elseif line:find("collisionbox = ") ~= nil then

 model_obj:set_meta("collisionbox", line:split(" = ")[2]:split())

 elseif line:find("visual_size = ") ~= nil then

 local data = line:split(" = ")[2]:split()

 if #data == 3 then

 model_obj:set_meta("visual_size", {x = data[1], y = data[2], z = data[3]})

 elseif #data == 2 then

 model_obj:set_meta("visual_size", {x = data[1], y = data[2], z = data[2]})

 elseif #data == 1 then

 model_obj:set_meta("visual_size", {x = data[1], y = data[1], z = data[1]})

 end

 elseif line:find("textures = ") ~= nil then

 local data = line:split(" = ")[2]:split()

 if #data < 2 then

 model_obj:set_meta("textures", {data})

31

 else

 model_obj:set_meta("textures", data)

 end

 elseif line:find("animations => ") ~= nil then

 local data = line:split(" => ")[2]:split(";")

 -- Inserting nested tables from https://stackoverflow.com/a/22598242

 local animtable = {}

 for item = 1, #data, 1 do

 local subdata = data[item]:split(":")

 local subnum = subdata[2]:split()

 animname = subdata[1]

 animtable[animname] = subnum

 end

 model_obj:set_meta("animations", animtable)

 end

 end

 file:close()

10.2 Implementation for auto-explorer and building-maker

As of this writing on 05/05/20, the very basic functionality for building-maker and auto-

explorer have been implemented inside mobs_npc [19], a mobs mod for the mobs framework

mobs_redo [4]. The original writings made before this rebase follow below:

Depending on the way that any existing code I find is implemented, they may build on

top of them, or they may become standalone mods. However, I saw that the mod open_ai [9],

has the rudimentary concepts of both of these proposed mods implemented (although mostly

undocumented). I knew that trying to redo this functionality would take a while to complete for

a solo project, so I just decided to observe the behavior from the mod itself, editing any code

where necessary. The following actions led me to discover the similar behavior:

• The mobs could already walk around randomly, but looking at the code, I saw that they

can generate a path to players who hold certain items, node-by-node (see Figure 19 for

action).

32

• Editing the AI behavior to pick a random number from 0 to 2, not just from 0 to 1, in

order to enable mobs to access building functionality. This causes them to build

structures based from schematic files, node-by-node, bottom-to-top (the code can be

seen in Figure 20).

• From the Minetest Developer Wiki [18]: “Schematics are pre-defined node patterns to

be placed somewhere in the world. They allow to create some complex figures or

structures and repeat them with little random alterations. A schematic tells in an area

what nodes should be created, with a given probability for each node to appear.” By

default, the only schematic shipping with open_ai is a jungle tree. After I added some

more schematic files (purely consisting of various kinds of trees and bushes, no man-

made structures), and adding additional code to randomly pick from that list of files, the

mobs seem to build them just fine (see Figure 21 for action).

Below follows more Lua code that reads a random schematic file that the mobs will then use:

--inject a schematic for what it will build, else don't execute
function ai_library.build:load_schematic(self)
 if self.schematic == nil then
 local schem_dir =
minetest.get_modpath("open_ai").."/schematics/"
 local schem_list =
minetest.get_dir_list(schem_dir)
 local building = schem_list[math.random(1,
#schem_list)]
 print("getting schematic "..building)
 local str =
minetest.serialize_schematic(schem_dir..building, "lua",
{lua_use_comments = false, lua_num_indent_spaces = 0}).."
return(schematic)"
 self.schematic = loadstring(str)()
 self.schematic_map = {x=1,y=1,z=1}
 self.schematic_origin = table.copy(self.mpos)
 self.schematic_size = schematic.size
 self.index = 1
 end
end

33

https://dev.minetest.net/schematic

Figure 19: A nearby sheep mob walking towards the player holding dry grass

Figure 20: Changing the behavior to enable mobs to access building functionality

34

Figure 21: Various mobs building different kinds of vegetation, although randomly

10.2.1 Implementation with mobs_redo

After determining that the mob behavior in open_ai [9] was too random, with them

frequently immediately building another structure on top of previous ones, and the

complexity of CraftAssist [10] would be too much for me alone to rewrite, I have

decided to rebase my efforts on top of another mob framework, called mobs_redo [3].

This particular framework seems to be one of the most popular ones, coming in with a

well-defined and documented API that allows for a considerable amount of flexibility.

The modpacks written by the author of this framework represent a wide variety of what

mobs can be programmed to do, which were enough to get me to try altering one of the

mods for this framework, mobs_npc [19].

This work that I did only relates to one file, npc.lua. The very basic functionality of auto-

explorer and building-maker are merged, and the work can be found in the two places:

• https://gitlab.com/snippets/1973551 – For the patch file containing only the

changes I made to mobs_npc.

• https://gitlab.com/snippets/1973552 – For the entire file from mobs_npc,

containing both the original code along with my changes.

35

https://gitlab.com/snippets/1973552
https://gitlab.com/snippets/1973551

Chapter 11: Test Plan and Test Results

Testing can take place on any computer that has Minetest installed. It always involves

the same procedure of launching Minetest, selecting or creating a world, and enabling the

desired mods. Launch the world after doing that. If any errors pop up during launch or run time,

I will have to go back and fix the errors. Repeat this process until the mods I’m working on are

running satisfactorily.

However, it is other users who may ultimately use the mods I produce. As of 05/05/20,

they seem to not have been of much use, so I cannot gain feedback from them at this time.

Using whatever I already knew, I determined that the functionality of all that I wrote has basic

functionality that does work, although there can be occasional rough edges for less experienced

users. These can be fixed by having more people developing these mods with me, or by me

dedicating more time to working on them.

36

Chapter 12: User Operation Manual

Parts of the instructions based from the Minetest Wiki [20]. Section 12.1 applies to all mods,

including the ones I made.

12.1 Installing Mods

Mods are often distributed in the form of compressed archives or version-control

repositories (most often Git). To get them working, they must be placed into certain directories

that Minetest will search in.

1. Download the desired mod(s) locally.

2. Place the mod(s) in this directory: $path_user/mods. That is minetest-
install-directory/mods/ in the official Windows releases and on GNU/Linux

with RUN_IN_PLACE enabled and ~/.minetest/mods/ in globally installed

Minetest versions.

3. Enable the mod(s) for the world(s) to be played. This can either be done in the GUI by

clicking on “Configure” in the world selection, or by adding load_mod_<modname>
= true in the world.mt file in the world directory. Note that newly installed mods are

disabled for all worlds by default, so you explicitly need to enable them.

4. Play the selected world after all desired mods are enabled.

12.2 Using chchar

For this mod to be of any use, it is required to install 3D model files into a specific

directory (at this time, I have not published any model files with the correct metadata files).

Below are the instructions from the README of this project:

1) Copy your 3D model files to `models`. Only four formats will be accepted by Minetest:

 * Blitz3D (.b3d)

 * Quake2 models (.md2)

 * Maya/Wavefront (.obj)

 * Microsoft DirectX (.x)

2) Copy all the textures that each 3D model uses to `textures`.

3) Create `meta/<name>.txt` with the minimum following fields (separated by new lines):

 * Model Name

 * Textures

37

4) It is recommended to fill out the rest of these fields for optimal performance:

 * Animations

 * Collision Box

 * Eye Height

The next step is to activate a Minetest world with chchar enabled. Instructions may

differ depending on what inventory mod is enabled at runtime (either sfinv or unified-

inventory).

1. Press ‘I’ or the key used to open the inventory. There should be a tab or button that

allows access to the model list that needs to be clicked on.

2. Browse through the list for the desired model. Click on its button, and the player model

will change accordingly.

3. The changes will only be seen in 3rd-person view, not the default 1st-person view. Press

‘F7’ to change to 3rd-person view.

4. To revert back to the default model, click the first icon in the list, or use the chat

command /chchar reset.

12.3 Using mobs_npc with mobs_redo + building functionality

1. Before activating a Minetest world, copy some or all of the schematics from

‘games/minetest_game/mods/default/schematics/’ (other mods providing schematic

files can be used in place of this) to .

2. Activate a Minetest world with both mobs_redo and mobs_npc enabled. Have creative

mode activated for faster testing, but survival mode also works, although the NPCs and

required items will take longer to be acquired.

3. Press ‘I’ or the key used to open the inventory. Search the inventory for ‘skeleton key’.

Add at least one to the player’s inventory.

4. Search the inventory for ‘npc’, which should bring up an item that can spawn NPCs. Add

at least one to the player’s inventory.

5. Change the current item to the NPC spawner. Spawn at least one NPC. Switch the

current item to the skeleton key.

38

6. Right-click on one of the NPCs using the selected skeleton_key, and watch it build a

structure (instantaneously). This will also cause it to stand in place if it was following a

player or walking around.

7. To get the NPC to walk again, right-click on it while not having a skeleton key selected. If

the skeleton key is still selected, the previously-built structure will likely be overwritten

with another one. After the NPC walks around or follows a player far away from the

previous structure, it is safe to right-click it with a skeleton key and have it build again.

39

Chapter 13: Conclusions (SD II)

• It is easier for me to build on top of, put together, or port existing software than to write

them from scratch. Here I only have to write the code necessary to make such software

work together.

• A single person usually cannot match the effort of a group of multiple people, unless he/

she spends enough time working on such things.

• With this semester about to be over, I should have more time to polish up any of the

mods I have made during this school year.

• It looks like that nobody else has found the work done as part of this project useful to

them as of 05/05/20, so I will have to do a lot more work to get my mods into a more

usable state.

40

References

1. http://www.minetest.net/ | Minetest – Open-source voxel game engine

2. https://www.minecraft.net/en-us/

3. https://github.com/minetest/minetest_game/tree/master/mods/player_api or

https://gitlab.com/minetest/minetest_game/-/tree/master/mods/player_api

4. https://notabug.org/TenPlus1/mobs_redo

5. https://github.com/stujones11/minetest-3d_armor

6. https://github.com/minetest-mods/skinsdb

7. https://github.com/MirceaKitsune/minetest_mods_creatures

8. https://github.com/AiTechEye/aliveai/

9. https://github.com/jordan4ibanez/open_ai

10. https://github.com/facebookresearch/craftassist

11. https://github.com/aleju/mario-ai

12. https://www.lua.org/home.html

13. http://irrlicht.sourceforge.net/

14. https://www.blender.org/

15. https://gitlab.com/Worldblender/chchar | One of my repositories

16. https://github.com/minetest-mods/qa_block

17. https://github.com/prestidigitator/minetest-mod-luacmd

18. https://dev.minetest.net/schematic

19. https://notabug.org/TenPlus1/mobs_npc

20. https://wiki.minetest.net/Help:Installing_Mods

41

https://dev.minetest.net/schematic
https://github.com/prestidigitator/minetest-mod-luacmd
https://wiki.minetest.net/Help:Installing_Mods
https://notabug.org/TenPlus1/mobs_npc
https://github.com/minetest-mods/qa_block
https://gitlab.com/Worldblender/chchar
https://www.blender.org/
http://irrlicht.sourceforge.net/
https://www.lua.org/home.html
https://github.com/aleju/mario-ai
https://github.com/facebookresearch/craftassist
https://github.com/jordan4ibanez/open_ai
https://github.com/AiTechEye/aliveai/
https://github.com/MirceaKitsune/minetest_mods_creatures
https://github.com/minetest-mods/skinsdb
https://github.com/stujones11/minetest-3d_armor
https://notabug.org/TenPlus1/mobs_redo
https://www.minecraft.net/en-us/
https://gitlab.com/minetest/minetest_game/-/tree/master/mods/player_api
https://github.com/minetest/minetest_game/tree/master/mods/player_api
http://www.minetest.net/

	Abstract
	Chapter 1: Problem Statement
	1.1 Background and Statement
	1.2 Challenges Assessment

	Chapter 2: Introduction and Existing Work Survey
	2.1 Introduction
	2.2 Existing Work Survey
	2.3 Development Environment

	Chapter 3: Project Time Table --- Gantt Chart
	3.1 Project Task List
	3.2 – Gantt Chart

	Chapter 4: Requirements and Usage Scenario
	4.1 chchar Requirements
	4.1.1 Functional Requirements
	4.1.2 Non-functional Requirements
	4.2 building-maker Requirements
	4.2.1 Functional Requirements
	4.2.2 Nonfunctional Requirements
	4.3 auto-explorer Requirements
	4.3.1 Functional Requirements
	4.3.2 Nonfunctional Requirements
	4.3 Example Use Cases For Each Mod
	4.3.1 For chchar
	4.3.2 For building-maker
	4.3.3 For auto-explorer

	Chapter 5: System Architecture Description and Interface Design
	5.1 System Architecture
	5.2 Interface Design: Graphical and Textual

	Chapter 6: Module and sub-module design and Function Description
	6.1 Flowchart
	6.2 Database Design
	6.3 Data Flow Descriptions

	Chapter 7: Requirement Validation
	7.1 Minimum Requirements
	7.1.1 For chchar
	7.1.2 For building-maker
	7.1.3 For auto-explorer
	7.2 Optional Requirements

	Chapter 8: Risk Assessment and Planning
	8.1 Known Risks

	Chapter 9: Interface Implementation
	9.1 Programming Environment
	9.2 System Development Environment
	9.3 UI Screenshots
	9.3.1 Screenshots for chchar

	Chapter 10: Implementation Technical Details
	10.1 Implementation of chchar
	10.2 Implementation for auto-explorer and building-maker
	10.2.1 Implementation with mobs_redo

	Chapter 11: Test Plan and Test Results
	Chapter 12: User Operation Manual
	12.1 Installing Mods
	12.2 Using chchar
	12.3 Using mobs_npc with mobs_redo + building functionality

	Chapter 13: Conclusions (SD II)
	References

